Spark Structured Streaming - Introduction (1/3)
A brief introduction to Spark Structured Streaming
Structured Streaming is a new of looking at realtime streaming. With abstraction on DataFrame and DataSets, structured streaming provides alternative for the well known Spark Streaming. Structured Streaming is built on top of Spark SQL Engine. Some of the main features of Structured Streaming are -
- Reads streams as infinite table.
- Fault-tolerance guarantees through check pointing and Write Ahead Logs (WAL)
- Ensures end-to-end exactly-once.
- Streaming aggregations, event-time windows, stream-to-batch joins
- Continuous Processing (Experimental - Available from Spark 2.3) and many more
We will see each of these featured in detail in the coming posts. The streams are computed on highly optimized Spark SQL Engine. The queries are processed in micro-batches which allows batch like processing on Streams. This is an important point to achieve low end-to-end latencies.
Spark Streaming (D-Streams) vs Spark Structured Streaming
Most of us have heard of Spark Streaming and often mistake Structured Streaming with Spark Streaming D-Stream. We will see some major differences in these 2.
Spark Streaming (D-Streams) | Spark Structured Streaming |
---|---|
RDD based streaming | Dataframe/ Dataset based streaming |
Batch time has to be specified inside the application | Uses micro-batch |
Higher latency is batch size is not properly assigned | Low latency achieved through micro-batches |
Triggers are bound often not customizable and are bound by batch and window time | Highly customizable triggers that can manipulate processing and events times separately |
Update mode not available | Sink can be treated as infinite table where new data can be updated as it arrives |
Buzzwords in Structured Streaming
Let’s look at some of the core concepts of Structured Streaming.
- Output Modes
- Fault Tolerance
- List of Sources
- List of Sinks
- Schema Inference and Partitioning Data
- Watermarks
- Joins
- Triggers
Output Modes :
Structured Streaming provides Output mode to control the data behaviour at sink. These mode are:
Append Mode - This is the default mode, where only the new rows added to the Result Table since the last trigger will be thrown as output to the sink.
Usage : df.spark.outputMode("append")
Update Mode - Only the rows in the Result Table that were updated since the last trigger will be outputted to the sink.
Usage : df.spark.outputMode("update")
Complete Mode - The whole Result Table will be output to the sink after every trigger. This is supported for aggregation queries.
Usage : df.spark.outputMode("complete")
Matrix of Supported Queries :
Query Type Watermark Append Mode Update Mode Complete Mode Aggregation Yes Yes Yes Yes Aggregation No No Yes Yes Queries with joins N/A Yes No No
Fault Tolerance (Checkpoint Directory) :
Structured Streaming provides a robust fault tolerance by maintaining a checkout directory and write ahead logs. The checkpoint directory also ensures that the query progress and running aggregates are stored in the specified path.
Usage: df.spark.option("checkpointLocation", "path/to/HDFS/dir")
List of Sources :
Input streams for creating streaming Dataframes are created using DataStreamReader
interface. Below is a matrix of list of sources
Matrix of Supported Sources :
Source Supported Types Options Fault Tolerant Notes File text, csv, json, orc, parquet path: path to the input directory, and common to all file formats.
maxFilesPerTrigger: maximum number of new files to be considered in every trigger (default: no max)
latestFirst: whether to processs the latest new files first, useful when there is a large backlog of files (default: false)
fileNameOnly: whether to check new files based on only the filename instead of on the full path (default: false).Yes Does not support multiple comma-separated paths Socket Reads UTF8 text data from a socket connection host: host to connect to, must be specified
port: port to connect to, must be specifiedNo Used only for testing Rate Generates data at the specified number of rows per second rowsPerSecond (default: 1): How many rows should be generated per second.
rampUpTime (e.g. 5s, default: 0s): How long to ramp up before the generating speed becomes rowsPerSecond. Using finer granularities than seconds will be truncated to integer seconds.
numPartitions (e.g. 10, default: Spark’s default parallelism): The partition number for the generated rows.Yes This source is intended for testing and benchmarking. Kafka kafka Refer Kafka integration docs Yes
List of Sinks :
Sinks are created from DataStreamWriter
.
Matrix of Supported Sinks
Sink Supported Output Modes Options Fault Tolerant Notes File Append path: path to the output directory, must be specified Yes (exactly-once) Supports writes to partitioned tables. Partitioning by time may be useful. Kafka Append, Update, Complete Refer Kafka integration docs Yes (at-least-once) Foreach Append, Update, Complete None. This is a custom sink Depends on ForeachWriter implementation Implementation Details Console Append, Update, Complete numRows: Number of rows to print every trigger (default: 20)
truncate: Whether to truncate the output if too long (default: true)No Memory Append, Complete - No
Schema Inference and Partitioning Data :
Structured Streaming provides a clean way of partition discovery. This way we can organize our dataset in a more logical way. By partitioning the data, we can further improve the fetch performance of SQL Engine especially when data is loaded in Hive tables or any partitioned schema.
To achieve this, we need to name the file landing directories as path/to/data/key=value/
. Example is shown in my GitHub Repo. The output directories in the path path/to/data/key=value/
are created when writing output, when you specify key
as part of schema. We will see this is a live demo in the upcoming post.
N.B: Make sure you have atleast one partition created before running the query.
Watermarks :
Watermarking is an awesome way to capture late data. By specifying the maximum threshold on the timestamp field, we can enusre that all the late data is accounted for in our processing. At this point, I would like to introduce the concept of Processing Time and Event Time.
- Processing Time - This is the time at which data reached Spark engine for processing.
- Event Time - This is the time at which an event occurred.
E.g. : An IoT sensor captures an event at 13:30 CST and this event reaches spark engine in window of 13:30 - 13:45. Here the Event time is 13:30. Say for some reason, the event occurring at 13:32 is seen by Spark engine at 13:50, this data could be rejected by spark because it is out-of-order and has arrived late, out-of-window period to engine. We do not want to lose this delayed data. From Spark 2.1 onwards, watermark
is introduced to account for such late data scenarios. Here you can specify a threshold from the time of occurrence when data should be captured. Let’s say, engine is processing window of 13:45 - 14:00 and a watermark
of “15 minutes” is specified on event_time column, spark will consider the data of coming in at 13:32 despite the fact that window 13:30 - 13:45 has elapsed. The data at 13:32 is now capture in window of 13:45 - 14:00 thus ensuring no data loss.
From Spark Docs :
For a specific window starting at time T, the engine will maintain state and allow late data to update the state until (max event time seen by the engine - late threshold > T). In other words, late data within the threshold will be aggregated, but data later than the threshold will start getting dropped
While watermark appears tempting to avoid data loss, we need to be careful while using it. Watermarks can be used only in Append or Update mode. There should be an event time column in the schema. When using aggregation, withWatermark API should be called on same timestamp column as mentioned in the aggregation. withWatermark must be called before the aggregation for the watermark details to be used.
Joins :
Structured Streaming supports both static-stream joins and stream-stream joins. The result of the streaming join is generated incrementally, similar to the results of streaming aggregations in the previous section.
Pointers on stream-stream joins : Any row received from one input stream can match with any future, yet-to-be-received row from the other input stream. Hence, for both the input streams, we buffer past input as streaming state, so that we can match every future input with past input and accordingly generate joined results. The challenge od stream-stream join is that at any given point of time, the data from either of the sources could be empty. This may cause delay while using Outer, Left or Right joins.
- in Inner joins, to avoid unbounded state, you have to define additional join conditions such that indefinitely old inputs cannot match with future inputs and therefore can be cleared from the state. In other words
- Define a constraint on event-time across the two inputs such that the engine can figure out when old rows of one input is not going to be required (i.e. will not satisfy the time constraint) for matches with the other input. This constraint can be defined in one of the two ways. Time range join conditions (e.g. …JOIN ON leftTime BETWEN rightTime AND rightTime + INTERVAL 1 HOUR) OR Join on event-time windows (e.g. …JOIN ON leftTimeWindow = rightTimeWindow).
- watermark + event-time constraints is mandatory for left and right outer joins.This is because for generating the NULL results in outer join, the engine must know when an input row is not going to match with anything in future.
Below matrix will explain different types of joins.
Left Input | Right Input | Type of Join | Supported | Notes |
---|---|---|---|---|
Static | Static | all | Yes | |
Static | Stream | Inner | Yes |
|
Static | Stream | Left Outer | No | |
Static | Stream | Right Outer | Yes |
|
Static | Stream | Full Outer | No | |
Stream | Static | Inner | Yes |
|
Stream | Static | Left Outer | Yes |
|
Stream | Static | Right Outer | No | |
Stream | Static | Full Outer | No | |
Stream | Stream | Inner | Yes |
|
Stream | Stream | Left Outer | Yes |
|
Stream | Stream | Right Outer | Yes |
|
Stream | Stream | Full Outer | No |
Halt !!!! ✋ .. There are few caveats we need to keep in mind before proceeding
- A watermark delay of “2 hours” guarantees that the engine will never drop any data that is less than 2 hours delayed. But data delayed by more than 2 hours may or may not get processed.
- The NULL values in outer joins will be generated with a delay. This is because the engine will wait long enough to make sure there are no joins in future.
- The generation of outer joins will be delayed. This is because each micro-batch is adavanced at the end of watermark. The next micro-batch uses updated watermark to clean-up the state and produce the output. If any of the two input streams being joined does not receive data for a while, the outer (both cases, left or right) output may get delayed.
Triggers :
Trigger can be considered an alternative approach to specify windows and batch time. Triggers provide options to specify timing of streaming data processing, whether the query is going to executed as micro-batch query with a fixed batch interval or as a continuous processing query
Trigger Type | Description | Example |
---|---|---|
Unspecified | The micro-batches will be executes ASAP i.e, as soon as they arrive | df.writeStream.format(“console”).start() |
Fixed Interval | The micro-batches are kicked off at specified interval. Summarizing 3 scenarios :
|
df.writeStream.format(“console”).trigger(Trigger.ProcessingTime(“2 seconds”)).start() Trigger API Doc |
One Time | Only one micro-batch is executed to process all the available data in the engine. | df.writeStream.format(“console”).trigger(Trigger.Once()).start() |
Continuous Process (Experimental) | The query will be executed in the new low-latency, continuous processing mode. | df.writeStream.format(“console”).trigger(Trigger.Continuous(“1 second”)).start() More on Continous Process |
Where to go form here
Let’s look at some demo examples. These examples are available in my GitHub Repo
- Word Count over socket (network)
- File to File Real-time streaming.
Share this post
Twitter
Google+
Facebook
LinkedIn
Email